Metering potential and limitations for smart-grid design.
Jeffrey Taft is Accenture’s global smart grid chief architect, located in Pittsburgh, Pa.
There are many definitions of what constitutes a smart grid and many visions for how a more intelligent grid will enable the future energy economy. While these visions vary, they also have many characteristics in common—characteristics such as distributed intelligence, adaptive self-healing, and multi-way communications across the entire energy delivery chain. Some approaches to smart-grid design involve deployment of high-performance line sensors, while others rely upon use of the advanced meter infrastructure (AMI) to provide visibility into distribution grid state. While smart meters don’t provide support for the highest-performance smart-grid functions, they can provide significant capability when the AMI system is properly designed to support the evolution to a smart grid. Proper design for this purpose implies modifications to several aspects of the AMI system, including types of meters, specifications for the meter communication system, and design of the meter data management solution.
The question, then, is how far can smart metering take us toward realizing a smart grid, and what factors should a utility consider in the design of a smart meter system if the eventual goal includes smart grid?